Bitotech Advancements Support the Potato Industry

Improving Performance and Sustainability

Since the 1990s, biotechnology has significantly impacted U.S. agriculture, with over 90% of corn, cotton, soybeans, canola, and sugar beets now grown using genetically engineered (GE) varieties. Recently, the USDA approved two new bio-engineered potatoes, offering potential benefits to the potato industry.

- The Kal.91.03 potato, based on the scab-resistant Kalkaska variety, improves long-term storage and chip-processing through invertase silencing.
- New potato varieties using the drought-tolerant XERICO gene show promise for enhancing water use efficiency, with increased specific gravity and yield observed.

These advancements support the commercial potato industry by improving crop performance and sustainability.

Cold Storage Chip Processing

Using vacuolar acid invertase silencing (VInv), the MSU scab resistant variety Kalkaska has excellent chip quality fried after six months storage at 40 F.

Chips made directly from 6 months storage at 40 F (4.4 C) degrees.

Second Generation Disease Resistance

As part of the USAID Feed the Future Project, we have developed bio-engineered potatoes combining three late blight resistance Rgenes and virus resistance to PVY and PLRV. We have USDA-APHIS Non-Regulated Status for these events.

- MSU2DR-01 for Late Blight and PVY resistance: (RpiAmr1, RpiAmr3, RpiVnt1 and RySto)
- MSU2DR-02 for Late Blight, PVY and PLRV resistance: (RpiAmr1, RpiAmr3, RpiVnt1, RySto, and Rladg)

Dave Douches and Joe Coombs Michigan State University Department of Plant, Microbial, and Soil Sciences East Lansing, Michigan 48824

New USDA Rule

Animal and Plant Health Inspection Service U.S. DEPARTMENT OF AGRICULTURE

Based on 30 years of evidence, the USDA finalized a new rule for the regulation of agricultural biotechnology in May, 2020.

Regulatory Status Review (RSR)

In the new RSR process, the USDA APHIS evaluates if a GE plant requires oversight based on the characteristics of the plant and its plant-pest risk, not the method used to develop it. If a plant developed using genetic engineering is found to be unlikely to pose a plant pest risk, APHIS will not require regulation.

Starch Increase and Drought Tolerance

XERICO: gene from Arabidopsis with similar genes in potato. We are using the drought-induced XERICO gene.

Greenhouse studies verified drought tolerance.

• Agronomic field studies demonstrated no yield penalty and increased starch content.

Acknowledgements

This research is supported by Michigan Potato Industry Commission and Michigan Translational Research and Commercialization (MTRAC) Program funds.

